organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 2-[(Z)-4-isobutyl-5-oxo-2-(phenylimino)imidazolidin-1-vl]acetate

Yong Sun,^a* Hong-Xia Li,^b Ping He^b and Gui-hua Li^c

^aYunyang Teachers College, Danjiangkou 442700, People's Republic of China, ^bKey Laboratory of Pesticides & Chemical Biology of the Ministry of Education, Central China Normal University, Wuhan 430079, People's Republic of China, and ^cDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China

Correspondence e-mail: suny6135@126.com

Received 6 November 2007; accepted 13 November 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.005 Å; R factor = 0.069; wR factor = 0.195; data-to-parameter ratio = 14.7.

In the crystal structure of the title compound, $C_{17}H_{23}N_3O_3$, intermolecular $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds are present. The planar heterocyclic ring makes a dihedral angle of 64.4 $(1)^{\circ}$ with the phenyl ring.

Related literature

Related preparation and biological activity is described by Lacroix et al. (2000a,b). For related literature, see: Li & Hu (2006).

Experimental

Crystal data

C17H23N3O3 $M_{\rm r} = 317.38$ Orthorhombic, Pbca a = 16.059 (2) Å b = 10.6310 (16) Å c = 20.690 (3) Å

V = 3532.2 (9) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 292 (2) K $0.20 \times 0.20 \times 0.10 \text{ mm}$

Data collection

Bruker SMART 4K CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\rm min} = 0.984, T_{\rm max} = 0.992$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.069$	1 restraint
$wR(F^2) = 0.195$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
3097 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
211 parameters	

26346 measured reflections

 $R_{\rm int} = 0.101$

3097 independent reflections

2154 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5\cdots O2^i$	0.93	2.47	3.257 (4)	143
$N2-H2A\cdotsO1^{i}$	0.86	2.31	3.137 (3)	162

Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, z$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

We gratefully acknowledge financial support of this work by the National Natural Science Foundation of Hubei Province.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2473).

References

Bruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.

- Lacroix, G., Peignier, R., Pepin, R., Bascou, J. P., Perez, J. & Schmitz, C. (2000a). US Patent No. 6 002 016.
- Lacroix, G., Peignier, R., Pepin, R., Bascou, J. P., Perez, J. & Schmitz, C. (2000b). Chem. Abstr. 132, 35698e.
- Li, G.-H. & Hu, Y.-G. (2006). Acta Cryst. E62, 01691-01693.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, 04768 [doi:10.1107/S1600536807058473]

Ethyl 2-[(Z)-4-isobutyl-5-oxo-2-(phenylimino)imidazolidin-1-yl]acetate

Y. Sun, H.-X. Li, P. He and G. Li

Refinement

All H atoms were located in difference maps and treated as riding atoms, except those at N1, with the following distance restraints: C—H = 0.93 Å, U_{iso} =1.2 U_{eq} (C) for Csp², C—H = 0.98 Å, U_{iso} = 1.2 U_{eq} (C) for CH, C—H = 0.97 Å, U_{iso} = 1.2 U_{eq} (C) for CH₂, N—H = 0.86 Å, U_{iso} = 1.2 U_{eq} (N) for NH, C—H = 0.96 Å, U_{iso} = 1.5 U_{eq} (C) for CH₃.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Fig. 2. The packing in the crystal structure, showing the N—H…O and C—H…O hydrogen bonds as dashed lines.

Ethyl 2-[(Z)-4-isobutyl-5-oxo-2-(phenylimino)imidazolidin-1-yl]acetate

Crystal data	
C ₁₇ H ₂₃ N ₃ O ₃	$F_{000} = 1360$
$M_r = 317.38$	$D_{\rm x} = 1.194 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pbca	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 3517 reflections

a = 16.059 (2) Å	$\theta = 2.3 - 21.8^{\circ}$
<i>b</i> = 10.6310 (16) Å	$\mu=0.08~mm^{-1}$
c = 20.690 (3) Å	T = 292 (2) K
$V = 3532.2 (9) \text{ Å}^3$	Block, colorless
<i>Z</i> = 8	$0.20\times0.20\times0.10~\text{mm}$

Data collection

Bruker SMART 4K CCD area-detector diffractometer	3097 independent reflections
Radiation source: fine-focus sealed tube	2154 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.101$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)	$h = -19 \rightarrow 19$
$T_{\min} = 0.984, \ T_{\max} = 0.992$	$k = -12 \rightarrow 12$
26346 measured reflections	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.069$	H-atom parameters constrained
$wR(F^2) = 0.195$	$w = 1/[\sigma^2(F_o^2) + (0.0923P)^2 + 1.1347P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.002$
3097 reflections	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
211 parameters	$\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.09982 (18)	0.7576 (3)	0.08787 (13)	0.0458 (7)
C2	0.0456 (2)	0.6621 (3)	0.06955 (14)	0.0551 (8)
H2	-0.0046	0.6822	0.0496	0.066*
C3	0.0655 (2)	0.5376 (3)	0.08081 (17)	0.0659 (9)
Н3	0.0290	0.4745	0.0679	0.079*
C4	0.1392 (2)	0.5062 (3)	0.11101 (15)	0.0603 (9)
H4	0.1525	0.4223	0.1184	0.072*
C5	0.19213 (19)	0.5989 (3)	0.12982 (15)	0.0591 (9)
Н5	0.2415	0.5782	0.1508	0.071*
C6	0.17313 (18)	0.7238 (3)	0.11799 (14)	0.0547 (8)
Н6	0.2105	0.7861	0.1306	0.066*
C7	0.11827 (17)	0.9583 (3)	0.04646 (12)	0.0424 (7)
C9	0.15621 (18)	1.1546 (3)	0.00999 (13)	0.0479 (7)
C10	0.2068 (2)	1.0674 (3)	-0.09344 (15)	0.0645 (9)
H10A	0.1498	1.0486	-0.1056	0.077*
H10B	0.2182	1.1534	-0.1065	0.077*
C11	0.2631 (3)	0.9824 (5)	-0.13001 (18)	0.0954 (14)
H11	0.2525	0.8962	-0.1153	0.114*
C12	0.3534 (3)	1.0105 (7)	-0.1188 (3)	0.162 (3)
H12A	0.3643	1.0971	-0.1287	0.244*
H12B	0.3868	0.9577	-0.1462	0.244*
H12C	0.3671	0.9944	-0.0744	0.244*
C13	0.2439 (4)	0.9881 (8)	-0.2014 (2)	0.167 (3)
H13A	0.1864	0.9671	-0.2084	0.251*
H13B	0.2786	0.9293	-0.2241	0.251*
H13C	0.2544	1.0716	-0.2172	0.251*
C14	0.02954 (18)	1.1411 (3)	0.07902 (14)	0.0508 (8)
H14A	-0.0183	1.0858	0.0756	0.061*
H14B	0.0147	1.2210	0.0595	0.061*
C15	0.04940 (19)	1.1616 (3)	0.14927 (14)	0.0503 (7)
C16	-0.0116 (3)	1.2182 (4)	0.24988 (18)	0.0879 (13)
H16A	-0.0635	1.1980	0.2714	0.106*
H16B	0.0318	1.1664	0.2687	0.106*
C17	0.0080 (4)	1.3489 (5)	0.2607 (2)	0.1209 (18)
H17A	0.0605	1.3684	0.2409	0.181*
H17B	0.0112	1.3648	0.3063	0.181*
H17C	-0.0347	1.4005	0.2420	0.181*
N1	0.07527 (15)	0.8841 (2)	0.08053 (12)	0.0518 (6)
N2	0.18427 (15)	0.9414 (2)	0.00589 (11)	0.0501 (6)
H2A	0.2208	0.8838	0.0119	0.060*
C8	0.21386 (19)	1.0593 (3)	-0.02093 (13)	0.0492 (7)
H8	0.2715	1.0748	-0.0074	0.059*
N3	0.09884 (14)	1.0867 (2)	0.04362 (11)	0.0444 (6)
01	0.15797 (13)	1.2674 (2)	0.00413 (11)	0.0635 (6)
O2	0.11634 (16)	1.1560 (3)	0.17248 (12)	0.0920 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

O3	-0.01909 (14)	1.1890 (2)	0.1811	9 (10) 0.0	0732 (7)	
Atomic displa	cement parameters ((\AA^2)				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0515 (17)	0.0453 (17)	0.0406 (15)	-0.0024 (14)	0.0101 (13)	0.0044 (12)
C2	0.0557 (18)	0.054 (2)	0.0560 (19)	-0.0059 (15)	-0.0061 (14)	0.0081 (14)
C3	0.068 (2)	0.049 (2)	0.081 (2)	-0.0111 (17)	-0.0014 (18)	0.0035 (17)
C4	0.066 (2)	0.049 (2)	0.066 (2)	0.0048 (16)	0.0110 (17)	0.0138 (15)
C5	0.0473 (18)	0.067 (2)	0.064 (2)	0.0020 (16)	0.0024 (15)	0.0149 (16)
C6	0.0526 (18)	0.058 (2)	0.0531 (18)	-0.0125 (15)	0.0022 (14)	0.0054 (14)
C7	0.0502 (16)	0.0414 (17)	0.0357 (14)	-0.0016 (13)	0.0013 (12)	-0.0010 (12)
С9	0.0526 (17)	0.0422 (18)	0.0489 (16)	-0.0031 (14)	-0.0012 (13)	0.0044 (13)
C10	0.065 (2)	0.075 (2)	0.0532 (19)	-0.0010 (18)	0.0023 (16)	0.0055 (16)
C11	0.104 (3)	0.123 (4)	0.059 (2)	0.020 (3)	0.009 (2)	-0.007 (2)
C12	0.090 (4)	0.305 (10)	0.091 (3)	0.043 (5)	0.022 (3)	-0.007 (4)
C13	0.157 (5)	0.282 (9)	0.063 (3)	0.058 (5)	0.006 (3)	-0.046 (4)
C14	0.0510 (17)	0.0511 (18)	0.0502 (17)	0.0098 (14)	0.0016 (14)	-0.0031 (13)
C15	0.0499 (18)	0.0472 (18)	0.0538 (18)	0.0065 (14)	0.0047 (15)	0.0007 (13)
C16	0.097 (3)	0.110 (3)	0.057 (2)	-0.003 (2)	0.026 (2)	-0.010(2)
C17	0.191 (5)	0.101 (4)	0.071 (3)	-0.014 (4)	0.018 (3)	-0.024 (2)
N1	0.0576 (15)	0.0453 (15)	0.0525 (14)	-0.0005 (12)	0.0111 (12)	0.0061 (11)
N2	0.0576 (15)	0.0439 (14)	0.0488 (14)	0.0064 (11)	0.0124 (11)	0.0031 (11)
C8	0.0517 (17)	0.0482 (18)	0.0477 (16)	-0.0010 (14)	0.0101 (13)	0.0053 (13)
N3	0.0521 (14)	0.0361 (13)	0.0449 (13)	0.0010 (11)	0.0068 (11)	-0.0007 (10)
O1	0.0723 (15)	0.0399 (14)	0.0782 (15)	-0.0001 (10)	0.0046 (12)	0.0065 (11)
02	0.0664 (16)	0.145 (3)	0.0649 (16)	0.0304 (17)	-0.0104 (13)	-0.0237 (15)
O3	0.0633 (15)	0.0986 (19)	0.0576 (14)	0.0068 (13)	0.0157 (11)	-0.0164 (12)
Geometric par	rameters (Å, °)					
C1—C6		1.380 (4)	C11—	H11	0.98	00
C1—C2		1.391 (4)	C12—	H12A	0.96	00
C1—N1		1.410 (4)	C12—	H12B	0.96	00
C2—C3		1.381 (5)	C12—	H12C	0.96	00
С2—Н2		0.9300	C13—	H13A	0.96	00
C3—C4		1.378 (5)	C13—	H13B	0.96	00

C1—C6	1.380 (4)	C11—H11	0.9800
C1—C2	1.391 (4)	C12—H12A	0.9600
C1—N1	1.410 (4)	C12—H12B	0.9600
С2—С3	1.381 (5)	C12—H12C	0.9600
С2—Н2	0.9300	С13—Н13А	0.9600
C3—C4	1.378 (5)	C13—H13B	0.9600
С3—Н3	0.9300	C13—H13C	0.9600
C4—C5	1.358 (5)	C14—N3	1.453 (3)
C4—H4	0.9300	C14—C15	1.504 (4)
C5—C6	1.385 (4)	C14—H14A	0.9700
С5—Н5	0.9300	C14—H14B	0.9700
С6—Н6	0.9300	C15—O2	1.179 (3)
C7—N1	1.263 (3)	C15—O3	1.316 (3)
C7—N2	1.364 (3)	C16—C17	1.441 (6)
C7—N3	1.401 (3)	C16—O3	1.460 (4)
С9—О1	1.205 (3)	C16—H16A	0.9700
C9—N3	1.362 (4)	C16—H16B	0.9700
С9—С8	1.514 (4)	С17—Н17А	0.9600

C10-C11	1.485 (5)	C17—H17B	0.9600
С10—С8	1.507 (4)	C17—H17C	0.9600
C10—H10A	0.9700	N2—C8	1.451 (4)
C10—H10B	0.9700	N2—H2A	0.8573
C11—C12	1.499 (7)	C8—H8	0.9800
C11—C13	1.511 (6)		
C6—C1—C2	117.8 (3)	C11—C13—H13A	109.5
C6-C1-N1	122.4 (3)	C11—C13—H13B	109.5
C2-C1-N1	119.5 (3)	H13A—C13—H13B	109.5
C3—C2—C1	120.6 (3)	C11—C13—H13C	109.5
C3—C2—H2	119.7	H13A—C13—H13C	109.5
C1—C2—H2	119.7	H13B—C13—H13C	109.5
C4—C3—C2	120.5 (3)	N3—C14—C15	112.5 (2)
С4—С3—Н3	119.8	N3—C14—H14A	109.1
С2—С3—Н3	119.8	C15—C14—H14A	109.1
C5—C4—C3	119.4 (3)	N3-C14-H14B	109.1
С5—С4—Н4	120.3	C15—C14—H14B	109.1
C3—C4—H4	120.3	H14A—C14—H14B	107.8
C4—C5—C6	120.5 (3)	O2—C15—O3	124.7 (3)
C4—C5—H5	119.8	O2-C15-C14	125.4 (3)
С6—С5—Н5	119.8	O3-C15-C14	109.9 (3)
C1—C6—C5	121.2 (3)	C17—C16—O3	111.9 (3)
С1—С6—Н6	119.4	C17—C16—H16A	109.2
С5—С6—Н6	119.4	O3—C16—H16A	109.2
N1	133.3 (3)	C17—C16—H16B	109.2
N1	120.6 (2)	O3—C16—H16B	109.2
N2-C7-N3	106.0 (2)	H16A—C16—H16B	107.9
O1-C9-N3	126.5 (3)	C16—C17—H17A	109.5
01—C9—C8	127.5 (3)	C16—C17—H17B	109.5
N3—C9—C8	105.9 (2)	H17A—C17—H17B	109.5
C11-C10-C8	115.3 (3)	C16—C17—H17C	109.5
C11-C10-H10A	108.5	H17A—C17—H17C	109.5
C8-C10-H10A	108.5	H17B—C17—H17C	109.5
C11-C10-H10B	108.5	C7—N1—C1	120.2 (2)
C8-C10-H10B	108.5	C7—N2—C8	112.1 (2)
H10A—C10—H10B	107.5	C7—N2—H2A	122.5
C10-C11-C12	112.9 (4)	C8—N2—H2A	116.7
C10-C11-C13	110.5 (4)	N2-C8-C10	113.9 (3)
C12—C11—C13	109.9 (4)	N2	102.5 (2)
C10-C11-H11	107.8	C10—C8—C9	109.7 (2)
C12-C11-H11	107.8	N2	110.2
C13-C11-H11	107.8	С10—С8—Н8	110.2
C11-C12-H12A	109.5	С9—С8—Н8	110.2
C11—C12—H12B	109.5	C9—N3—C7	112.8 (2)
H12A—C12—H12B	109.5	C9—N3—C14	124.3 (2)
C11-C12-H12C	109.5	C7—N3—C14	122.5 (2)
H12A—C12—H12C	109.5	C15—O3—C16	117.8 (3)
H12B—C12—H12C	109 5		

supplementary materials

C6—C1—C2—C3	-0.7 (4)	C11—C10—C8—N2	-68.4 (4)
N1-C1-C2-C3	-175.0 (3)	C11—C10—C8—C9	177.5 (3)
C1—C2—C3—C4	0.7 (5)	O1—C9—C8—N2	177.5 (3)
C2—C3—C4—C5	0.1 (5)	N3—C9—C8—N2	-5.4 (3)
C3—C4—C5—C6	-1.0 (5)	O1—C9—C8—C10	-61.2 (4)
C2—C1—C6—C5	-0.2 (4)	N3-C9-C8-C10	115.9 (3)
N1-C1-C6-C5	174.0 (3)	O1—C9—N3—C7	-174.2 (3)
C4—C5—C6—C1	1.0 (5)	C8—C9—N3—C7	8.6 (3)
C8—C10—C11—C12	-62.8 (5)	O1—C9—N3—C14	-0.6 (5)
C8—C10—C11—C13	173.7 (4)	C8—C9—N3—C14	-177.7 (2)
N3-C14-C15-O2	12.5 (5)	N1—C7—N3—C9	173.8 (3)
N3—C14—C15—O3	-168.6 (3)	N2—C7—N3—C9	-8.3 (3)
N2-C7-N1-C1	8.7 (5)	N1—C7—N3—C14	0.1 (4)
N3—C7—N1—C1	-174.1 (2)	N2-C7-N3-C14	177.9 (2)
C6—C1—N1—C7	63.9 (4)	C15—C14—N3—C9	-94.3 (3)
C2-C1-N1-C7	-122.0 (3)	C15—C14—N3—C7	78.7 (3)
N1—C7—N2—C8	-178.2 (3)	O2-C15-O3-C16	1.9 (5)
N3—C7—N2—C8	4.3 (3)	C14—C15—O3—C16	-177.1 (3)
C7—N2—C8—C10	-117.7 (3)	C17—C16—O3—C15	85.4 (5)
C7—N2—C8—C9	0.6 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C5—H5···O2 ⁱ	0.93	2.47	3.257 (4)	143
N2—H2A···O1 ⁱ	0.86	2.31	3.137 (3)	162
Symmetry codes: (i) $-x+1/2$, $y-1/2$, z.				

Fig. 1

Fig. 3

